Restoring the Reputation of the Much-Maligned TCP
IAB Workshop on Stack Evolution in a Middlebox Internet (SEMI)
26th — 27th January 2015, ETH Ziirich, Switzerland

Stuart Cheshire, Apple, Inc.
Ideas expressed here are solely the opinions of the author

At the 79t [ETF, in November 2010 in Beijing, I
was introduced to the concept of NAT64+DNS64,
on the IETF’s experimental NAT64 Wi-Fi net-
work. I tried it using on my iPhone, and the re-
sults exceeded even my most optimistic expecta-
tions. Initially, things did not look good. Every
single app I tried, from email to web browsing
to stock quotes to weather forecasts to on-line
shopping to airline information, displayed an
error alert saying, “You have no Internet
connection.” This was quite disappointing. How-
ever, | then discovered something surprising.
In every case, once I dismissed the oh-so-helpful
alert, the app then proceeded to work fine,
using native IPv6 on the iPhone to talk via
the NAT64+DNS64 gateway to [Pv4 services.

This was extremely encouraging. Success was
within our grasp. All we had to do was to get
every app to remove the pointless code that dis-
played the stupid “You have no Internet connec-
tion” alert, and we’d be in great shape for the
future.

Fast forward to 2015. Where are we now? Cur-
rent data appears to show that we now have a
smaller proportion of i0OS apps that are IPv6-
compatible than we did four years ago.

How did that happen?

Like many things, this one is certainly a
combination of factors. Lack of easy access to a
NAT64+DNS64 network for testing meant that
many app developers, while fully supportive of
IPv6 in principle, had no easy way to test their
apps on an IPv6 network to make sure they
worked.

But another important factor has been the move
towards using custom protocols running over
UDP. On Apple’s iOS there are good address-
family-agnostic APIs for applications using
HTTP or TCP for connections. For applications
using UDP, not so much. Developers are more on
their own, relying on gethostbyname() and
sendto(). And, being more on their own, without
access to a NAT64+DNS64 network for testing,
more of these app developers end up writing
code that’s not IPv6-compatible.

What has caused this trend? I think that two
decades of SIGCOMM papers detailing every tiny
shortcoming of TCP (usually with a proposed
solution), while individually valid and useful in
the academic community, collectively have
served to smear the reputation of TCP in many
minds.

For example, it's widely known that, “When loss
occurs that’s not a result of congestion, TCP’s
response of slowing down may be undesirable.”
Experienced networking people know that
99.9% of the time loss is a result of congestion,
50 99.9% of the time TCP’s response is the right
thing to do, and it may not even be possible to
reliably identify the other 0.1% anyway. How-
ever, that subtle analysis is often lost, and “TCP
Does The Right Thing After All” doesn’t make for
a winning SIGCOMM paper title. As a result, the
lesson many casual observers take away often
ends up simplified to, “When loss occurs TCP
does the wrong thing.”

Simply put, in many minds, TCP has too many
flaws to count. It’s an unmitigated disaster.

Consequently many are encouraged to conclude
that any protocol they design themselves on top
of UDP will definitely work better than TCP.
Well, there are precisely zero academic
conference papers detailing flaws in their
protocol, so that means it must have none, right?

To reverse this trend, we need to revitalize
development of TCP. Features like TCP Fast
Open and Tail Loss Probe need to get deployed.
Without these new features, legitimate concerns
about things like the latency induced by the
three-way handshake will encourage people to
design their own application-specific protocols.
Frequently, those application-specific protocols,
while allegedly superior to TCP in the one spe-
cific area that the developer was giving their
attention to, will be inferior to TCP in every
other way. The lack of IPv6-compatible
implementations and APIs for these application-
specific protocols is one example of the many
ways they fall short of TCP.



