Great Expectations

Protocol Design and Socioeconomic Realities

Dirk Kutscher <ietf@dkutscher.net>

University of Applied Sciences Emden/Leer

The Internet & Web as a whole qualify as wildly successful technologies, each of which empowered
by wildly succesful protocols per RFC 5218’s definition [1]. As the Internet & Web became critical
infrastructure and business platforms, most of the originally articulated design goals and features
such as global reach, permissionless innovation, accessibility etc. [5] got overshadowed by the
trade-offs that they incur. For example, global reach — intended as enabling global connectivity
— can also imply global reach for infiltration, regime change and infrastructure attacks by state
actors. Permissionless innovation — motivated by the intention to overcome the lack of innovation
options in traditional telephone networks — has also led us to permissionless surveillance- and
mass-manipulation-based business models that have been characterized as detrimental from a
societal perspective.

Most of these developments cannot be directly ascribed to Internet technologies alone. For
example, most user surveillance and data extraction technologies are actually based on web protocol
mechanisms and particular web protocol design decisions. While it has been documented that
some of these technology and standards developments have been motivated by particular economic
interests [2], it is unclear whether different Internet design decisions could have led to a different,
“better” outcome. Fundamentally, economic drivers in different societies (and on a global scale)
cannot be controlled through technology and standards development alone.

This memo is thus rather focused on specific protocol design and evolution questions, specifically on
the question how technical design decisions relate to socio-economic effects, and aims at providing
input for future design discussions, leveraging experience from 50 years of Internet evolution, 30
years of Web evolution, observations from economic realities, and from years of Future Internet
research.

IP Service Model

The IP service model was clearly designed to provide a minimal layer over different link layer
technologies to enable inter-networking at low implementation cost [3]. Starting off as an experiment,
looking for feasible initial deployment strategies, this was clearly a reasonable approach. The
IP service model of packet-switched end-to-end best-effort communication between hosts (host
interfaces) over a network of networks, was implemented by:

« an addressing scheme that allows specifying source and destination host (interface) addresses
in a topologically structured address space; and
o minimal per-hop behavior (stateless forwarding of individual packets).

The minimal model implied punting many functions to other layers, encapsulation, and/or “man-
agement” services (transport, dealing with names, security). Multicast was not excluded by the
architecture, but also not very well supported, so that IP Multicast (and the required inter-domain
multicast routing protocols) did not find much deployment outside well-controlled local domains
(for example, telco IP TV).

The resulting system of end-to-end transport over a minimal packet forwarding service has served
many applications and system implementations. However, over time, technical application as well
as business requirements have led to additional infrastructure, extensions and new way of using
Internet technologies, for example:



e in-network transport performance optimization to provide better control loop localization in
mobile networks;

o massive CDN infrastructure to provide more scalable popular content distribution;

o (need for) access control, authorization based on IP and transport layer identifiers;

o user-tracking based on IP and transport layer identifiers; and

» usage of DNS for localization, destination rewriting, and user tracking.

It can be argued that some of these approaches and developments have also led to some of the
centralization/consolidation issues that are discussed today — especially with respect to CDN that is
essentially inevitable for any large-scale content distribution (both static and live content). Looking
at the original designs, the later understood commercial needs and the outcome today, one could
ask the question, how would a different Internet service model and different network capabilities
affect the tussle balance [5] between different actors and interests in the Internet?

For example, a more powerful forwarding service with more elaborate (and more complex) per-hop-
behavior could employ (soft-) stateful forwarding, enabling certain forms of in-network congestion
control. Some form of caching could help making services such as local retransmissions and potential
data sharing at the edge a network service function, removing the need for some middleboxes.

Other systems such as the NDN/CCNx variants of ICN employ the principle of accessing named-data
in the network, where each packet must be requested by INTEREST messages that are visible to
forwarders. Forwarders can aggregate INTERESTS for the same data, and in conjunction with in-
network storage, this can implement an implicit multicast distribution service for near-simultaneous
transmissions.

In ICN, receiver-driven operation could eliminate certain DoS attack vectors, and the lack of
source addresses (due to stateful forwarding) could provide some form of anonymity. The use
of expressive, possibly application-relevant names could enable better visibility by the network —
however potentially enabling both, more robust access control and (on the negative side) more
effective hooks for censoring communication and monitoring user traffic.

This short discussion alone illustrates how certain design decisions can play out in the real world
later and that even little changes in the architecture and protocol mechanisms can shift the tussle
balance between actors, possibly in unintended ways. As Clark argued in [3], it is important to
understand the corresponding effects or architectural changes, let alone bigger redesign efforts.

The Internet design choices at a time were motivated by certain requirements that were valid at
the time — but may not all still hold today. Todays networking platforms are by far more powerful,
more programmable. The main applications are totally different as are the business players and the
governance structures. This process of change may continue in the future, which adds another level
of difficulty for any change of architecture elements and core protocols. However, this does not
mean that we should not try it.

Network Address Translation

Network Address Translation (NAT) has been criticized for impeding transport layer innovation,
adding brittleness, and delaying IPv6 adoption. At the same time NAT was deemed necessary
for growing the Internet eco system, for enabling local network extensions at the edge without
administrative configuration. It also provides a limited form of protection against certain types of
attacks. As such it addressed shortcomings of the system.

The implicit client-initiated port-forwarding (the technical reason for the limit attack protection
mentioned above) is obviously blocking both unwanted and wanted communication, which makes it
difficult to run servers at homes, enterprise sites etc. in a sound way (manual configuration of port
forwarding still comes with limitations). This however could be seen as one of the drivers for the
centralization of servers in data centers (“cloud”) that is a concern in some discussions today. [4]

What does this mean for assessing and potentially evolving previous design decisions? The NAT
use cases and their technical realization are connected to several trade-offs that impose non-trivial



challenges for potential architecture and protocol evolution: 1) Easy extensibility at the edge
vs. scalable routing; 2) Threat protection vs. decentralized nature of the system; 3) Interoperability
vs. transport innovation.

In a positive light, use cases such local communication and dynamic Internet extension at the edge
(with the associated security challenges) represent interesting requirements that can help finding
the right balance in the design space for future network designs.

Encryption

Pervasive monitoring is an attack [7], and it is important to assess existing protocol and security
frameworks with respect to changes in the way that the Internet is being used by corporations
and state-level actors and to develop new protocols where needed. QUIC is encrypting transport
headers in addition to application data, intending to make user tracking and other monitoring
attacks harder to mount.

Economically however, the more important use case of user tracking today is the systematic
surveillance of individuals on the web, i.e., through a massive network of tracking, aggregation
and analytics entities [6]. Ubiquitous encryption of transport and application protocols does not
prevent this at all — on the contrary, it makes it more difficult to detect, analyze, and, where
needed, prevent user tracking. This does not render connection encryption useless (especially
not because surveillance in the network and on web platforms complement each other through
aggregation and commercial trading of personally identifying information (PII), but it requires a
careful consideration of the trade-offs.

For example, perfect protection against on-path monitoring is only effective if it covers the complete
path between a user agent and the corresponding application server. This shifts the tussle balance
between confidentiality and network control (enterprise firewalls, parental control etc.) significantly.
Specifically for QUIC, which is intended to run in user space, i.e., without the potential for OS
control, users may end up in situations where they have to trust the application service providers
(who typically control the client side as well, through apps or browsers, as well parts of the CDN
and network infrastructure) to transfer information without leaking PII irresponsibly.

If the Snowden revelations led to a better understanding of the nature and scope of pervasive
monitoring and to best current practices for Internet protocol design, what is the adequate response
to the continuous revelations of the workings and extent of the surveillance industry? What protocol
mechanisms and API should we develop, and what should we rather avoid?

DNS encryption is another example that illustrates the trade-offs. Unencrypted DNS (especially with
the EDNS client option) allows for a detailled monitoring of individual users’ and families’ behavior
by on-path monitoring. DNS encryption on the other hand can prevent on-path monitoring — but it
could effectively make the privacy situation for users worse, if it is implemented by centralizing servers
(so that application service provider, in addition to tracking user behaviour for one application, can
now also monitor DNS communication for all applications). This has been recognized in current
proposals, e.g., limiting the scope for DNS encryption to stub-to-resolver communication. While
this can be enforced by architectural oversight in standards development, we do not yet know how
we can enforce this in actual implementation, for example for DNS over QUIC.

Future Challenges: In-Network Computing

Recent advances in platform virtualization, link layer technologies and data plane programmability
have led to a growing set of use cases where computation near users or data consuming applications is
needed — for example for addressing minimal latency requirements for compute-intensive interactive
applications (networked Augmented Reality, AR), for addressing privacy sensitivity (avoiding
raw data copies outside a perimeter by processing data locally), and for speeding up distributed
computation by putting computation at convenient places in a network topology.



In-network computing has mainly been perceived in four main variants so far: 1) Active Networking,
adapting the per-hop-behavior of network elements with respect to packets in flows, 2) Edge
Computing as an extension of virtual-machine (VM) based platform-as-a-service to access networks,
3) programming the data plane of SDN switches (leveraging powerful programmable switch CPUs
and programming abstractions such as P4), and 4) application-layer data processing frameworks.

Active Networking has not found much deployment due to its problematic security properties and
complexity. Programmable data planes can be used in data centers with uniform infrastructure,
good control over the infrastructure, and the feasibility of centralized control over function placement
and scheduling. Due to the still limited, packet-based programmability model, most applications
today are point solutions that can demonstrate benefits for particular optimizations, however often
without addressing transport protocol services or data security that would be required for most
applications running in shared infrastructure today.

Edge Computing (just as traditional cloud computing) has a fairly coarse-grained (VM-based)
computation-model and is hence typically deploying centralized positioning/scheduling though
virtual infrastructure management (VIM) systems. Application-layer data processing such as
Apache Flink on the other hand, provide attractive dataflow programming models for event-based
stream processing and light-weight fault-tolerance mechanisms — however systems such as Flink are
not designed for dynamic scheduling of compute functions.

Ongoing research efforts (for example in the proposed IRTF COIN RG) have started exploring
this space and the potential role that future network and transport layer protocols can play. It is
feasible to integrate networking and computing beyond overlays, potentially ? What would be a
minimal service (like IP today) that has the potential for broad reach, permissionless innovation,
and evolution paths to avoid early ossification?

Conclusions

Although the impact of Internet technology design decisions may be smaller than we would like
to think, it is nevertheless important to assess the trade-offs in the past and the potential socio-
economic effects that different decisions could have in the future. One challenge is the depth of the
stack and the interactions across the stack (e.g., the perspective of CDN addressing shortcomings
of the IP service layer, or the perspective of NAT and centralization). The applicability of new
technology proposals therefore needs a far more thorough analysis — beyond proof-of-concepts and
performance evaluations.

References

1] D. Thaler, B. Aboba; What Makes for a Succesful Protocol?; RFC 5218; July 2008

3] David Clark; Designing an Internet; MIT Press; October 2018

4] Jari Arkko et al.; Considerations on Internet Consolidation and the Internet Architecture;
Internet Draft https://tools.ietf.org/html/draft-arkko-iab-internet-consolidation-01; March 2019

(1]
[2] S. Greenstein; How The Internet Became Commercial; Princeton University Press; 2017
3]
(4]

[5] Internet Society; Internet Invariants: What Really Matters; https://www.internetsociety.org/internet-
invariants-what-really-matters/; February 2012

[6] Shosanna Zuboff; The Age of Surveillance Capitalism; PublicAffairs; 2019
[7] Stephen Farrell, Hannes Tschofenig; Pervasive Monitoring is an Attack; RFC 7258; May 2014



	Great Expectations
	Protocol Design and Socioeconomic Realities
	IP Service Model
	Network Address Translation
	Encryption
	Future Challenges: In-Network Computing
	Conclusions
	References


