
1

Timely Detection of Lost Packets
in Interactive Media

Ali C. Begen

Abstract— Time-constrained error recovery is an integral com-
ponent of reliable low-delay video applications. Regardless of
the error-control method adopted by the application, unac-
knowledged or missing packets must be quickly identified as
lost or delayed, so that necessary actions can be taken by the
server/client on time. Historically, this problem has been referred
to as retransmission timeout (RTO) estimation. Earlier studies
show that existing RTO estimators suffer from either long loss
detection times or a large number of spurious timeouts. The
goal of this study is to address these problems by developing
an RTO estimation method specifically tailored for low-delay
video applications. This method exploits the temporal dependence
in packet delay to optimally manage the trade-off between the
amount of overwaiting and redundant retransmission rate. As
opposed to existing methods, our approach is completely adaptive
to the source video characteristics and time-varying network
conditions, and does not use any preset parameters.

I. INTRODUCTION

THE Internet is a shared medium; any packet injected
into the Internet has to wait for some time before it is

serviced. It therefore experiences random delay. Because of
the finite buffering capabilities of the routers and switches,
a packet is assumed to be lost if it has not been received
or acknowledged within some time after its transmission. In
TCP jargon, this duration is referred to as the retransmission
timeout (RTO). It is vital that the value of the RTO is chosen
large enough so that the packets experiencing long queueing
delays do not trigger spurious timeouts. However, adopting
an arbitrarily large RTO is impractical for low-delay video
applications. A delayed retransmission attempt eventually re-
covers a missing media packet. Yet, the chances are that the
retransmitted packet will be late and useless for decoding at the
client side. Therefore, an RTO estimation method that quickly
detects lost packets is imperative for such applications. Only
then can well-timed actions be taken for error control.

Naturally, retransmission-based error-control methods are
unsuitable for multimedia applications where the extra de-
lay introduced by the retransmissions is prohibitively large.
However, in certain circumstances retransmission-based error-
control methods can still be accommodated. As a rule of
thumb, the client should not time out pre-maturely for
the excessively-delayed packets, since under normal circum-
stances it is highly unlikely that a retransmitted packet will
arrive earlier than the initial transmission.

Needless to say, the primary challenge is that the client
has to decide on timeouts merely by observing the packet

This contribution summarizes some of the findings and results that have
been previously published in [1]. For detailed analysis and more results, refer
to [1].

arrivals. It is never a clear-cut decision whether a missing
packet has been lost or delayed. Naturally, a trade-off between
overwaiting and spurious timeouts is present. In this study,
we devise a novel RTO estimation method that involves two
main steps. In the first step, an adaptive linear delay predictor
produces the best estimate in terms of the mean-squared error
criterion by exploiting the temporal dependence among the
packet delay samples. In the second step, on the other hand, a
controller optimally manages the trade-off between the amount
of overwaiting and redundant retransmission rate by regulating
the bias to be added to the estimate produced in the previous
step. This controller has two different modes of operation: (i)
media-unaware and (ii) media-aware. In the media-unaware
mode, the controller ignores the unequal importance of the
video packets and treats each of them equally. In the media-
aware mode, however, the controller prioritizes the packets
that carry a more important payload and the packets whose
decoding deadlines are sooner, over the less important and
non-urgent packets.

Our approach has three main contributions:

• We develop an adaptive delay predictor for high-bitrate
video applications. A large number of multimedia pro-
tocols such as packet scheduling algorithms, congestion
control algorithms and adaptive buffer management tech-
niques can potentially benefit from this predictor.

• We derive an optimal media-unaware redundancy-
controllable timeout estimator. This estimator allows ap-
plications to recover as many packets as possible under
a given redundant rate budget.

• We formulate an optimal media-aware timeout estima-
tor that jointly considers the interdependency relations
among the video packets as well as their decoding
deadlines in computing the timeout estimates while still
conforming to the redundant rate constraint dictated by
the application or the network1.

It is important to note that not all of the error-control
methods are necessarily retransmission-based. Precise RTO
estimation is also useful in applications employing different
types of error-control/protection methods. For example, based
on the delay/loss predictions, the amount of redundancy in
channel coding or the amount of error resiliency in video
coding can be optimally adjusted to minimize the impact of
packet erasures. Accurate delay prediction is also essential for
an effective congestion control algorithm.

1The discussion related to media-aware timeout estimation is omitted in this
contribution. Interested readers are referred to Section V of [1] for a detailed
description.



2

II. AUTOREGRESSIVE MODELS FOR PACKET DELAY

A. Adaptive Linear Delay Prediction

Let us consider a stochastic process s and let s[n − k],
k ≥ 1 denote the past samples of this process. The operation
of linear prediction expresses the value of s[n] as the linear
combination of the samples s[n − k]. The estimate based on
the N most recent values is given by

s̃N [n] = E
{
s[n]|s[n− k], 1 ≤ k ≤ N

}
=

N∑
k=1

αk,Ns[n− k].

(1)
This estimate is called the one-step forward predictor of order
N . Our objective in prediction is to determine the constants
αk,N so as to minimize the mean square value of the forward
prediction error εN [n] = s[n]− s̃N [n]. From the orthogonality
principle, we know that the prediction error, i.e., εN [n], is
orthogonal to all data used to generate the prediction, i.e.,
s[n−m], where 1 ≤ m ≤ N . Mathematically, we have

E

⎧⎪⎨
⎪⎩

⎛
⎝s[n]−

N∑
k=1

αk,Ns[n− k]

⎞
⎠s[n−m]

⎫⎪⎬
⎪⎭
= 0 1 ≤ m ≤ N,

(2)
which yields a set of linear equations known as the Yule-
Walker equations. The coefficients αk,N of the predictor filter
HN (z) can be computed from

R[m]−
N∑

k=1

αk,NR[m− k] = 0 1 ≤ m ≤ N, (3)

where R[q] represents the lag-q autocorrelation of s.
The predictor filter coefficients can be easily computed by

the Durbin-Levinson recursion. As the order N of prediction
increases, the value of the mean prediction-error power PN

decreases or else remains the same. Since prediction-error
power is always positive, we have

P1 ≥ P2 ≥ . . . ≥ PN −−−−→
N→∞

P ≥ 0. (4)

The implication of (4) is that as we increase the order of the
predictor filter HN (z), we successively reduce the correlation
between the adjacent samples of the input process until we
ultimately reach a point at which increasing the order of
prediction any further does not reduce the prediction-error
power. At this point, the error is a white noise process and
consists of purely uncorrelated samples.

Suppose that PM−1 > PM and PM = PM+1 = . . . = P .
By definition, the process s is called an M th-order autore-
gressive, denoted by AR(M ), process or a wide-sense Markoff
process of order M . For this process, the M th-order predictor,
s̃M [n], equals to its Wiener predictor. Wiener predictors pro-
duce the best fit to the observed data by exploiting the existing
correlation completely. However, due to their high complexity
and low predictive accuracy, Wiener predictors are usually not
used in practice.

B. Model Selection

Generally, it is desirable to have the values predicted by a
model to be close to the actual data values. As pointed out
by (4), increasing the order of prediction naturally produces
better estimates and a lower prediction-error power. However,
an overfitted model may not distinguish the systematic effects
of the data from its random effects. For practical purposes,
we seek a model that yields a high predictive accuracy with
the smallest number of parameters. A popular model selec-
tion method is the Akaike’s Information Corrected Criterion
(AICC). The AICC score quantifies the relative goodness-of-
fit of a statistical model for the given data. A lower AICC
score indicates a better prediction model.

Let us illustrate the importance of model selection on three
packet delay traces. To generate these traces, we simulated
a moderate-sized Internet topology in ns-2 network simulator
and used video streams that were encoded by a standard H.264
codec at 300 Kbps, 600 Kbps and 1.2 Mbps. We will refer to
these delay traces with the notation of ΔT = 40 ms, ΔT =
20 ms and ΔT = 10 ms, respectively, where ΔT denotes the
average transmission interval at the server.

First, we examine the relation between the mean prediction-
error power and the order of prediction. The order of Wiener
prediction for the ΔT = 10 ms, ΔT = 20 ms and ΔT =
40 ms traces is found to be 12, 32 and 60, respectively. Clearly,
we require a higher order of prediction for larger ΔT . This is
not surprising since the correlation between the adjacent delay
samples reduces with ΔT . The mean prediction-error power
gradually decreases with the order of prediction. However, the
AICC scores first show a decreasing and then an increasing
trend. In other words, the predictive accuracy improves with
increasing N until a point and then starts to degrade. Specif-
ically, the AICC scores for the ΔT = 10 ms, ΔT = 20 ms
and ΔT = 40 ms traces reach their global minima at N = 3,
N = 9 and N = 12, respectively. These values are comparably
smaller than the ones corresponding to the Wiener prediction,
signifying that Wiener predictors are indeed overfitted and
have sub-optimal predictive accuracy.

C. Practical Considerations

Generally speaking, the AICC method suggests good mod-
els that provide sufficient insight into the process being
analyzed, while leaving out the random effects. Here, the
main objective is to select a computationally-efficient yet
intuitively plausible prediction model that adequately captures
the dynamics in the packet delay process.

A naive approach is the AR(1) model, where the next
delay estimate is solely determined by the last observation,
i.e., s̃1[n] = s[n − 1]. The phase diagrams plotted in Fig. 1
clearly indicate the existence of a significant lag-1 correlation
among the delay samples and support the AR(1) prediction
model. However, this predictor is not capable of distinguishing
whether packet delays are increasing, decreasing, or remaining
the same, and therefore, does not serve our goal.

A more elaborate model is the AR(2) model. AR(2) model
bases its estimation on the last two observations. By definition,



3

100 150 200 250 300 350
100

150

200

250

300

350

 s[n−1]

 s
[n

]

100 150 200 250 300 350
100

150

200

250

300

350

 s[n−1]

 s
[n

]

Fig. 1. Phase diagrams for ΔT = 10 ms (on the left) and ΔT = 40 ms
(on the right).

we have

s̃2[n] = α1,2s[n− 1] + α2,2s[n− 2], (5)

which can be rewritten as

s̃2[n] = (α1,2+α2,2)s[n−1]+α2,2

(
ΔT −Δt[n− 1]

)
, (6)

where Δt[n] denotes the interarrival time for packet n, i.e.,
the time difference between the arrivals of packets n and
n− 1. The interpretation of (6) is that the AR(2) model takes
into consideration not only the last delay sample but also its
deviation from the previous sample.

To understand how well an AR(2) predictor compares to its
Wiener counterpart, we plot the prediction-error autocorrela-
tion functions (ACF) for both predictors. Since Wiener predic-
tors completely model the data, the resulting error samples are
guaranteed to be uncorrelated, which is, however, not necessar-
ily true for AR predictors of lower orders. Nevertheless, Fig. 2
shows that the correlation left out by the AR(2) predictors
is rather insignificant, implying that AR(2) predictors have
sufficient prediction accuracy for practical purposes.

5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lags

A
ut

oc
or

re
la

tio
n 

C
oe

ffi
ci

en
ts

 

 
ΔT = 10, AR(2)
ΔT = 10, Wiener

5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lags

A
ut

oc
or

re
la

tio
n 

C
oe

ffi
ci

en
ts

 

 
ΔT = 40, AR(2)
ΔT = 40, Wiener

Fig. 2. ACFs of the prediction errors produced by Wiener and AR(2)
predictors for ΔT = 10 ms (on the left) and ΔT = 40 ms (on the right).

III. MEDIA-UNAWARE TIMEOUT ESTIMATION

When minimizing the mean square value of the prediction
error, an underestimate that is marginally smaller than the
actual value is as good as an overestimate that is marginally
larger than the actual value. However, in the context of
RTO estimation, underestimations trigger pre-mature timeouts
whereas overestimations eliminate them. In this section, we
formulate a computationally-efficient way to compute the
minimum amount of additional waiting that is required to keep
the probability of a pre-mature timeout below a desired value.

A. Methodology

In Fig. 3, we plot the prediction-error distributions for the
ΔT = 10 ms and ΔT = 40 ms traces. We notice that
each of these distributions (particularly, the tail parts) can
be approximated by a Gaussian distribution whose mean and
standard deviation (σ) are equal to those of the corresponding
prediction-error distribution. Statistically, Gaussian-distributed
samples of a white noise process are independent of each
other. In the light of Fig. 2, we infer that AR(2) predictors
produce error samples that are independent. This result has
two important implications: First, a sequence of independent
random variables is not predictable by linear or non-linear
models. Thus, if packet delay sampling is sufficiently dense,
the delay process can be almost completely characterized by
an AR(2) model. Second, Gaussian-distributed processes are
easy to work with and a rich set of mathematical tools is
available.

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
D

F

 

 

Prediction Error, AR(2)
Normal(0,6)

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
D

F

 

 

Prediction Error, AR(2)
Normal(0,14.8)

Fig. 3. Prediction-error distributions for ΔT = 10 ms (on the left) and
ΔT = 40 ms (on the right). Plots do not include the lost packets.

Let τ denote the additional amount of waiting to be added
to the initial delay predicted by (6), and let Φ(τ) denote the
underestimation probability. By definition,

Φ(τ) = P
{
s̃2[n] + τ < s[n]

}
, (7)

which is a non-increasing function of τ . We seek the minimum
value for τ that satisfies

Φ(τ) ≤ pf , (8)

where pf is the desired probability of timing out pre-maturely.
By rewriting Φ(τ) as P {τ < ε2}, we compute τ from

τ = F−1
ε2

(1− pf ), (9)

where Fε2
is the cumulative density function of ε2. A nice fea-

ture of the Gaussian distribution is that its inverse cumulative
function can be directly calculated from the first and second-
order moments. For example, to limit the rate of pre-mature
timeouts to 5%, τ should be set to 1.65 times the standard
deviation, which is 1.65× 14.8 = 25 ms for the ΔT = 40 ms
trace. While 25 ms may seem insignificant, τ quickly increases
for lower pf values, e.g., for pf = 0.1%, the required amount
increases to 46 ms.

The adverse impact of large τ values is the increase in the
time required to detect lost packets. To quantify the detection
time of a lost packet, we use the delay of the last successfully-
received packet as the hypothetical delay for the lost packet.
The loss detection time is then given by the difference between
the predicted and the hypothetical delays. That is,

w[n] = s̃2[n] + τ − s[n∗], ∀n : s[n] = ∞, (10)



4

where n∗ is the last successfully-received packet. The average
loss detection time and the pre-mature timeout probability are
the benchmarks that characterize the performance of an RTO
estimator.

B. Simulation Results

In this section, we present several ns-2 simulation results
and evaluate the performances of four different RTO estima-
tors: (i) the enhanced TCP-like RTO estimator, denoted by
RTOE−TCP, (ii) recursive weighted median filtering, denoted
by RTORWM(1,5), (iii) a percentile-based RTO estimator that
predicts the forward-trip time (FTT) of the next expected
packet by computing the pth-percentile of the FTT histogram
(excluding the lost packets), denoted by RTOPRC, and (iv)
the media-unaware RTO estimator, denoted by RTOAR(2).
Detailed results about each RTO estimator can be found in
Section IV.B of [1].

We compare RTOE−TCP, RTOPRC and RTOAR(2) on
the pf − w plane. Since the loss-detection performance of
RTORWM(1,5) is the worst by a large margin, we omit it
from this comparison. Here, we are interested in determining
which RTO estimator detects the lost packets in the shortest
amount of time without exceeding a given pre-mature timeout
probability. Fig. 4 shows that RTOAR(2) substantially out-
performs RTOE−TCP in all cases. For the ΔT = 10 ms
and ΔT = 20 ms traces, RTOAR(2) also achieves a better
performance than RTOPRC. However, in the ΔT = 40 ms
trace, RTOPRC detects the lost packets 8 - 20 ms faster than
RTOAR(2) at regions where pf > 0.6%. Nevertheless, at the
expense of a 20 ms increase in the average loss detection time,
RTOAR(2) is able to diminish the pre-mature timeout rate to
0.1%.

One important issue in RTO estimation is the rapid con-
vergence of the timeout estimates. Based on our simulations,
we found that RTOE−TCP required at least 15-20 samples to
produce good estimates. Thus, when the network conditions
changed rapidly, RTOE−TCP largely failed. This problem
was solved to some extent by RTORWM(1,5), which only
required five samples to produce an estimate. On the other
hand, RTOPRC initially required several samples to be able
to work properly. In contrast, RTOAR(2) required only the last
two samples for RTO estimation. This fast-convergence feature
provides RTOAR(2) robustness when the packets continuously
experience a large amount of jitter, or when only a small
number of delay samples are available for RTO estimation.

IV. CONCLUSIONS

Our findings can be summarized as follows:
• RTO estimation is one of the most important components

of any error-control/protection method and congestion
control algorithm. A good RTO estimator should be
able to quickly identify lost packets under rigid delay
requirements. This allows the applications to react to the
congestion events faster and better.

• Provided that the packets are transmitted at sufficiently
short intervals, consecutive delay samples show a strong
correlation. Wiener predictors can be used to fully exploit

this correlation and produce uncorrelated prediction-error
samples. We showed that these uncorrelated error samples
could be modeled by a Gaussian distribution, implying
that the error samples were indeed independent. Thus,
Wiener prediction models can completely characterize
the packet delay process. We also showed that AR(2)
predictors could be safely used in practice instead of their
Wiener counterparts.

• Adaptivity to time-varying network conditions, e.g.,
timely reaction to congestion events, is the key in suc-
cessful RTO estimation. Slow adaptation potentially leads
to a significant performance degradation in terms of
redundant/late retransmissions which might make the
congestion worse.

REFERENCES

[1] A. C. Begen and Y. Altunbasak, “An adaptive media-aware
retransmission timeout estimation method for low-delay packet
video,” IEEE Trans. Multimedia, vol. 9, no. 2, pp. 332–347, Feb.
2007.



5

0 20 40 60 80 100
0

1

2

3

4

5

Average Loss Detection Time (ms)

P
re

−
M

at
ur

e 
T

im
eo

ut
 P

ro
ba

bi
lit

y 
(%

)

 

 
RTO

E−TCP

RTO
PRC

RTO
AR(2)

0 50 100 150
0

1

2

3

4

5

95th−Percentile Loss Detection Time (ms)

P
re

−
M

at
ur

e 
T

im
eo

ut
 P

ro
ba

bi
lit

y 
(%

)

 

 
RTO

E−TCP

RTO
PRC

RTO
AR(2)

0 20 40 60 80 100
0

1

2

3

4

5

Average Loss Detection Time (ms)

P
re

−
M

at
ur

e 
T

im
eo

ut
 P

ro
ba

bi
lit

y 
(%

)

 

 
RTO

E−TCP

RTO
PRC

RTO
AR(2)

0 50 100 150
0

1

2

3

4

5

95th−Percentile Loss Detection Time (ms)

P
re

−
M

at
ur

e 
T

im
eo

ut
 P

ro
ba

bi
lit

y 
(%

)

 

 
RTO

E−TCP

RTO
PRC

RTO
AR(2)

0 20 40 60 80 100
0

1

2

3

4

5

Average Loss Detection Time (ms)

P
re

−
M

at
ur

e 
T

im
eo

ut
 P

ro
ba

bi
lit

y 
(%

)

 

 
RTO

E−TCP

RTO
PRC

RTO
AR(2)

0 50 100 150
0

1

2

3

4

5

95th−Percentile Loss Detection Time (ms)

P
re

−
M

at
ur

e 
T

im
eo

ut
 P

ro
ba

bi
lit

y 
(%

)

 

 
RTO

E−TCP

RTO
PRC

RTO
AR(2)

Fig. 4. Comparison of RTO estimators: ΔT = 10 ms (top), ΔT = 20 ms (middle), ΔT = 40 ms (bottom).


