Congestion Control Workshop

Data from measurements and simulations

July 28, 2012

Goals

- Goal of this session is too have a discussion where we learn about the relevant data to help us understand the problem and design solutions
- Want to increase understanding of topics like:
 - Latency we see on networks
 - Impact waiting for congestion to happen on latency
 - What happens when TCP competes with Voice/Video
 - Impact on retransmissions vs forward error correction

LTE Latency – Paper 28

- Commercial LTE networks have:
 - Near-infinite queue (no losses until >5 seconds)
 - Poisson-distributed packet arrivals
 - Quickly-varying link speed
 - Highly long-tailed delays (RTCP jitter estimate is bad)
- Operators do not (yet) believe this.
- Open question: How much throughput would transport forfeit if it wanted to cap queue at 100 ms?

Impact of ECN - Paper 4

Simulation of ECN on LTE shows

significantly less packet loss

initiating the rate adaptation in advance of actual congestion

better sharing the cost of congestion

a very significant reduction in latency

better quality for all users

Implicit method

Explicit (ECN) method

Impact of TCP- Paper 9

- Single short TCP flow impacts voice on startup but six short TCP flows destroy voice quality on high speed cellular network (2 mbps)
- Drops are due to the jitter, not losses

Can we be TFRC style fair ? — Paper 25

TFRC Rate (kbps) based on Loss (%) and RTT (ms)															
RTT(ms)															
900	1588	708	498	215	146	95	72	58	48	40	35	30	26	23	
800	1787	796	560	242	164	107	81	65	54	46	39	34	30	26	Video Quality
700	2042	910	640	277	187	122	92	74	62	52	45	39	34	30	Color Code:
600	2382	1061	747	323	219	143	108	86	72	61	52	45	39	34	
500	2858	1274	897	387	262	171	129	104	86	73	63	54	47	41	FHD >2M
400	3573	1592	1121	484	328	214	162	130	108	91	78	68	59	52	
350	4083	1820	1281	553	375	244	185	148	123	104	89	77	67	59	HD 1-2M
300	4764	2123	1494	645	437	285	215	173	144	121	104	90	79	69	
250	5717	2547	1793	774	525	342	259	208	172	146	125	108	94	83	SD ~500k
200	7146	3184	2242	968	656	428	323	259	215	182	156	135	118	103	
150	9528	4246	2989	1291	875	570	431	346	287	243	209	181	157	138	LD <300k
100	14292	6369	4483	1936	1312	856	646	519	431	364	313	271	236	207	
75	19056	8492	5978	2581	1749	1141	862	692	574	486	417	361	315	276	
50	28584	12737	8967	3872	2624	1711	1293	1038	861	729	626	542	472	413	
25	57169	25475	17933	7743	5248	3422	2585	2076	1722	1458	1251	1083	944	827	
	0.01%	0.05%	0.1%	0.5%	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	Loss(%)

What bandwidth would be safe relative to 1 TCP connection?

Can we be TFRC style fair ? — Paper 25

What bandwidth would be safe relative to 4 TCP connection?

Video vs TCP- Paper 11

Not so fair ...

Adaption takes time ...

Forward Error Correction – Paper 30

- Better to user experience with lower bit rate + fec
- Better latency than ARQ based schemes

RRTCC Simulations – Paper 6 Self-fairness - Problems

- Flow A and B are controlled by RRTCC.
- Flow C is constant at 1.3 Mbps.
- Flow A is "noisier" than B due to C.
- We expect that flow A and B will share the 1 Mbps bottleneck fairly, i.e., 500 kbps each.

Self-fairness - Problems

- Different amount of cross traffic.
 - Flow A is more noisy than B due to significant cross traffic at N1.
 - Noisier signal means more filtering and slower detection.
 - Flow B loses against flow A.
- Other problems: Self-aware burstiness.

Under the Hood

Self-fairness - Possible solution

- Fixed noise variance.
- Additive Increase,
 Multiplicative Decrease.
- Send-side smoothing.