
Congestion Control for Interactive Media: Control Loops & APIs

Varun Singh

Aalto University

varun@comnet.tkk.fi

Jörg Ott

Aalto University

jo@comnet.tkk.fi

Colin Perkins

University of Glasgow

csp@csperkins.org

23 June 2012

Abstract

Standardisation of Web Real-Time Communications

(WebRTC) and Telepresence will likely lead to greatly

increased deployment of interactive multimedia applica-

tions on the Internet. The resulting high-rate multimedia

traffic may cause congestion, but few congestion con-

trol solutions have been proposed. We suggest that the

congestion control, codec, and application be coupled

and engage in a dialogue on the correct response to con-

gestion; and that congestion control consider semantic

feedback, not just transport-layer metrics.

1 Introduction

The development of the WebRTC conferencing standards

in the IETF and W3C, and parallel work on telepresence

in the IETF CLUE working group, can be expected to

kickstart growth of interactive media applications on the

Internet. When coupled with the rise in HTTP streaming

video and IPTV, we see that multimedia traffic will soon

(if not already) comprise the majority of network traffic.

The congestive load caused by non-interactive stream-

ing video and IPTV flows has been widely discussed,

and is kept manageable by using TCP-based adaptive bit

rate streaming (e.g., MPEG DASH and related systems),

or ISP-managed IP multicast delivery. The problem of

congestion control for interactive multimedia applica-

tions has received much less attention, however, but is

now potentially urgent to solve before WebRTC clients

become widely available in all web browsers.

In this position paper, we argue that effective con-

gestion control for interactive multimedia applications

requires close coupling between the media codec, the

network, and the logic driving the congestion control

loop. This coupling can only be realised by giving the

multimedia application insight into both codec operation

and network behaviour, through a cross-layer API that

allows the application to make policy choices to direct

the operation of the codec based on changing network

conditions, and an understanding of both the application

requirements, user preferences, and quality of experience

(QoE) constraints.

2 Background

Interactive multimedia traffic on the public Internet is

subject to the vagaries of a best effort IP network. This

includes packet loss, variable queuing delay, and poten-

tial packet reordering. Loss is generally, but not always,

due to congestion and queue overflow. Buffer bloat [2]

and drop-tail routers cause excess delay and bursty loss.

Media codecs have variable rate output. This can be

be modelled as a sequence of occasional large I-frames,

with many smaller P-frames in between. This comprises

a group-of-pictures (GOP). The output rate can be highly

bursty. A codec will have maximum and minimum rates

it supports, and may only be able to code to a limited set

of rates between those extremes. Codecs may also be

limited in when they can adjust their rate, for example

they may only be able to vary their encoding parameters

at a GOP boundary.

Applications use RTP [5] for media transport. RTP

provides reception quality feedback every few seconds,

but the RTP/AVPF profile [3] can allow near-immediate

feedback for most events of interest. Feedback includes

NACKs based on packet sequence numbers, but also

semantic feedback such as picture/slice loss indication

or reference picture selection. Retransmission or forward

error correction (FEC) may also be used to repair loss.

3 Control Loops

Observing the operation of rate adaptive interactive

multimedia applications, we see three control loops:

between the codec and sending process1; between the

sending process and network; and between the network

and decoder. We discuss each in turn, considering the in-

formation needed to make the best end-to-end decisions.

3.1 Codec–Sender Control Loop

The codec encodes media at a particular average rate,

subject to variation depending on the amount of activity

in the media input, and can adapt that average rate based

1We use ‘process’ in the general sense, and do not intend to imply

an operating system process.

1



on feedback from the sending process. Unlike in elastic

applications, there are generally constraints on how and

when a codec can adapt. The simplest of these relate to

possible sending rates: codecs have a limited range of

adaptation, and constraints on what rates can be selected

between these limits.

When the sender congestion control algorithm calcu-

lates a new rate for the codec, it is necessary to consider

how quickly the codec can adapt to the new rate. There

may be some considerable lag before the codec rate

can change. If codec and congestion control are tightly

coupled, and the lag is known, then the rate control

can compensate; else the slow control loop can cause

instability and oscillation.

One must also consider how a codec can adapt to

match the desired rate. This can be done by changing the

frame size, by changing the frame rate, or by changing

the quality. Any rate change will be noisy due to the

variable rate nature of many codecs and changes in the

input signal. The application should be able to control,

or at least suggest preferences, on what it is appropriate,

and should be consistent in its decision since alternating

between strategies may produce suboptimal results.

Effective operation requires a dialogue between the

sender process, with a desired sending rate based on

network conditions, and the media codec which has con-

straints on what rates it can adopt, how quickly it can

change rates, and the effect of rate changes on the user

experience.

As an example of how this dialogue might affect the

operation of the system, many codecs produce I-frames

on a fixed schedule, irrespective of how the traffic bursts

they cause fit into the available network capacity. A

smart media codec might cooperate with the network to

delay sending I-frames in some cases, when capacity is

unavailable. Similarly, a congestion control algorithm

that is forced, due to codec constraints, to send at a lower

rate than TCP would achieve over the same path, might

defend that lower share of the capacity aggressively, to

avoid being beaten down by competing flows.

3.2 Sender–Network Control Loop

The sender process frames data for transmission over

the network, and transmits RTP packets based on the

rate determined by the congestion control algorithm. It

collects quality feedback, in the form of RTCP reports,

to determine the future sending rate.

The receiver can accurately monitor packet reception,

but has comparatively limited scope to feed information

on network condition back to the sender (a correctly

configured RTP/AVPF stack will allow most events to

be reported, but not fine-grained per-packet feedback).

The limited bandwidth of the feedback channel can be

important when it comes to distinguishing between con-

gestive and non-congestive loss, for example when using

wireless networks, or if an application wants to detect

the onset of congestion by monitoring changes in packet

timing before they lead to packet loss.

For example, congestive packet loss in drop-tail

queues is preceded by increased end-to-end delay and

discards due to late arrival of packets at the receiver. This

suggests that it is important to give frequent feedback

on RTP packet timings, but there is insufficient RTCP

bandwidth to do so on a per-packet basis (like delay-

based TCP variants) within the constraints of RTCP. In

other environments, however, such frequent feedback is

not useful. If a router implements an active queue man-

agement scheme like, for example WRED, then excess

queuing delay and discards due to late arrival should not

occur. This makes per-packet timing feedback unneces-

sary, but complicates distinguishing between congestion

and bit-error losses.

The difference between testing in real-world deploy-

ments and in simulations is also important to consider.

This affects the accuracy of RTT measurements, impact-

ing delay based algorithm (e.g., TFRC) [4]. Time slot

driven simulation systems, such as ns2, have accurate

timing that is not representative of real-world systems.

A challenge with the sender–network control loop is

adapting given limited feedback, and distinguishing dif-

ferent network conditions and environments. Semantic

information becomes critical: when there is insufficient

feedback bandwidth to give accurate per-packet feed-

back, the sender must rely on higher-level summary

feedback of the meaning of network events, both for

their cause and the correct application-level response.

Trust in the receiver feedback accuracy is also important.

3.3 Network–Receiver Control Loop

The receiver has a playout buffer of data waiting to be

decoded and rendered. Given a rapid reaction, and a

sufficiently low RTT, it is possible to correct or conceal

missing packets. This can be effective at improving QoE.

A receiver can send packet-level feedback based solely

on sequence numbers and arrival times. Alternatively, if

the playout and codec decode buffers are combined, it

may infer the effect of loss on the codec state, and send

picture/slice-loss feedback to inform the sender of the

impact on the decoded video. This is more meaningful,

and requires fewer feedback packets. Separate jitter,

decoding, and playout buffering also result in excess

delay. A single buffer is desirable, taking into account

network jitter, decoding look-ahead, and repair time.

4 APIs for Adaptive Media

The discussion in Section 3 suggests that significant per-

formance penalties can arise from the mismatch between

codec expectations and the demands of the congestion

2



control algorithm, and because the network APIs do

not expose sufficient information to allow effective rate

adaptation for multimedia flows. To rectify this, we sug-

gest that interactive multimedia applications need new

APIs that expose details of the delivery process. These

APIs will allow applications and codecs to engage in a

much closer dialogue with the transport layer, and better

manage the delivery process.

Giving the application visibility into packet timing

and delivery is needed to allow application-level feed-

back. Accordingly, multimedia transport APIs should be

structured to promote coupling between the application,

codec, and network. This suggests exposing transport-

layer (e.g., UDP) packet timing and loss events in the

RTP encoding and de-jitter/playout buffers, rather than

trying to abstract away these details. These processes

may be exposed via triggers and callbacks to application

code, or by making the entire transmit and receive paths

visible to the application. Use of triggers and callbacks

allows applications to provide policy input and a smart

response to congestion, while avoiding the complexity

of exposing all the details of the media transport path.

As an example, congestion control algorithms that

monitor variation in one-way packet delay should be able

to reveal the estimated available network queuing capa-

city. With appropriate callbacks when capacity is avail-

able, this should allow cooperation between applications

and codecs to schedule traffic bursts at non-disruptive

times. For example, I-frames can be sent to refresh de-

coder state, but there is little point in doing this if the

traffic burst due to the I-frame will cause loss that will

disrupt decoder state.

Visibility into connection dynamics will also allow ap-

plications to chose how they allocate bandwidth between

flows. For example, if a sender has multiple video cam-

eras, it might have application-specific reasons to give

priority to one flow over another at certain times, which

cannot be known by the transport without cooperation.

The application should also be able to monitor video and

network statistics to adapt application behaviour: an ap-

plications may want to define a minimum video quality

below which it may consider switching to voice only or

terminating the call.

The transport layer API should allow an application

and codec to proactively manage the repair process, with

late data modifications at the sender side via a cooper-

ative API to ensure appropriate repair response (e.g., to

allow replacement of a queued but not yet sent segment

in response to feedback from the receiver). Receivers

should be aware of the state of the playout buffer and

expected network RTT, allowing them to make appropri-

ate requests for repair. For example, a receiver should

be able to determine that a retransmission will not arrive

before playout is due, and so be able to send a semantic

slice loss indication instead, allowing the sender to adapt

the media encoding to compensate for the loss. Altern-

atively, applications should be able to response to pic-

ture/slice loss indications by adapting media coding, as

well as by retransmitting lost packets.

A tightly coupled transport interface of this form will

give application flexibility to adapt to the network, by

engaging in a dialogue between the codec and the trans-

port layer over available capacity, traffic scheduling, and

repair, while still ensuring network safety. Cross-layer

signalling also allows for passing triggers from the net-

work layer to signal known bandwidth and/or latency

changes on edge links, or link addition or removal.

The two principles of application-layer framing and

integrated layer processing [1] were fundamental to the

design of RTP. They should be applied to congestion

control as much as to robustness and the design of RTP

payload formats.

5 Conclusions

We have discussed the tension that arises between the

congestion control algorithm’s expectation of the media

codec, the capabilities of the media codec to adapt, and

the limits of the feedback available via RTP/AVPF. This

tension may lead to lower quality of experience if the

media codec, network layer, and application logic do

not collaborate with each other to adapt the media to

the network. This requires expressive APIs that expose

the semantics of loss and delay events, rather than raw

metrics; Section 4 describes some features of such APIs.

To date, there has been considerable focus on packet-

level dynamics in the discussion of congestion control

for RTP sessions. This is expected, since existing con-

gestion control algorithms use this information directly.

However, it is not clear that this type of feedback is

most suitable for interactive multimedia applications

that use RTP/AVPF. We urge designers of congestion

control algorithms for interactive multimedia to consider

semantic feedback as a lower bandwidth alternative, and

to develop APIs that couple media coding, congestion

control, and repair feedback loops in a way that allows

meaningful policy input from applications and codecs.

References

[1] D. D. Clark and D. L. Tennenhouse. Architectural considera-

tions for a new generation of protocols. In Proc. SIGCOMM,

Philadelphia, PA, USA, September 1990. ACM.

[2] J. Gettys and K. Nichols. Bufferbloat: dark buffers in the Internet.

Communications of the ACM, 55(1):57–65, January 2012.

[3] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey. Extended

RTP profile for real-time transport control protocol (RTCP)-based

feedback (RTP/AVPF). IETF, July 2006. RFC 4585.

[4] A. Saurin. Congestion control for video-conferencing applications.

Master’s thesis, University of Glasgow, December 2006.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP:

A transport protocol for real-time applications. IETF, July 2003.

RFC 3550.

3


	Introduction
	Background
	Control Loops
	Codec–Sender Control Loop
	Sender–Network Control Loop
	Network–Receiver Control Loop

	APIs for Adaptive Media
	Conclusions

